Improved maximum-likelihood estimation of the shape parameter in the Nakagami distribution
نویسندگان
چکیده
منابع مشابه
Improved Maximum Likelihood Estimation of the Shape Parameter in the Nakagami Distribution
We develop and evaluate analytic and bootstrap bias-corrected maximum likelihood estimators for the shape parameter in the Nakagami distribution. This distribution is widely used in a variety of disciplines, and the corresponding estimator of its scale parameter is trivially unbiased. We find that both “corrective” and “preventive” analytic approaches to eliminating the bias, to O(n), are equal...
متن کاملMaximum Likelihood Parameter Estimation
The problem of estimating the parameters for continuous-time partially observed systems is discussed. New exact lters for obtaining Maximum Likelihood (ML) parameter estimates via the Expectation Maximization algorithm are derived. The methodology exploits relations between incomplete and complete data likelihood and gradient of likelihood functions, which are derived using Girsanov's measure t...
متن کاملMaximum-Likelihood Circle-Parameter Estimation via Convolution
In this paper, we present an interpretation of the Maximum Likelihood Estimator (MLE) and the Delogne-Kåsa Estimator (DKE) for circle-parameter estimation via convolution. Under a certain model for theoretical images, this convolution is an exact description of the MLE. We use our convolution based MLE approach to find good starting estimates for the parameters of a circle, that is, the centre ...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Computation and Simulation
سال: 2013
ISSN: 0094-9655,1563-5163
DOI: 10.1080/00949655.2011.615316